
Algorithms for Stochastic Parity Games

Krishnendu Chatterjee and Thomas A. Henzinger

Report No. UCB/CSD-5-1391

May 2005

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Algorithms for Stochastic Parity Games

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A stochastic graph game is played by two-players on a game graph with probabilistic transitions. We
present a strategy improvement algorithm for stochastic graph games with !-regular conditions specified as
parity objectives. From the strategy improvement algorithm we obtain a randomized sub-exponential time
algorithm to solve stochastic parity games.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

21

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Algorithms for Stochastic Parity Games ∗

Krishnendu Chatterjee† Thomas A. Henzinger†,‡

† EECS, University of California, Berkeley, USA
‡ EPFL, Switzerland

{c krish,tah}@eecs.berkeley.edu

May 2005

Abstract

A stochastic graph game is played by two-players on a game graph
with probabilistic transitions. We present a strategy improvement al-
gorithm for stochastic graph games with ω-regular conditions specified
as parity objectives. From the strategy improvement algorithm we ob-
tain a randomized sub-exponential time algorithm to solve stochastic
parity games.

1 Introduction

Graph games. A stochastic graph game [5] is played on a directed graph
with three kinds of states: player-1, player-2, and probabilistic states. At
player-1 states, player 1 chooses a successor state; at player-2 states, player 2
chooses a successor state; and at probabilistic states, a successor state is
chosen according to a given probability distribution. The result of playing
the game forever is an infinite path through the graph. If there are no
probabilistic states, we refer to the game as a 2-player graph game; otherwise,
as a 21/2-player graph game.

Games with parity objectives. The theory of graph games with ω-
regular winning conditions is the foundation for modeling and synthesizing
reactive processes. In the case of stochastic reactive processes, the cor-
responding stochastic graph games have three players, two of them (Sys-
tem and Environment) behaving adversarially (represented by player 1 and

∗This research was supported in part by the ONR grant N00014-02-1-0671, the AFOSR
MURI grant F49620-00-1-0327, and the NSF ITR grant CCR-0225610.

player 2), and the third (Uncertainty) behaving probabilistically. The class
of 21/2-player graph games with parity objectives provide an adequate model
for the problem, since every ω-regular objective can be specified as a parity
objective. The quantitative problem for 21/2-player games with parity objec-
tives Φ asks for the maximal probability with which player 1 with objective
Φ, can ensure the satisfaction of Φ from each state (this probability is called
the value of the game at a state). An optimal strategy for player 1 is a strat-
egy, which enable player 1 to win with maximal probability. The existence
of pure memoryless optimal strategies for 21/2-player games with reachabil-
ity objectives and 2-player games with parity objectives was extended to
21/2-player games with parity objectives in [14, 4, 18], (a pure memoryless
strategy is a deterministic strategy that does not depend on the history of
the game). The existence of pure memoryless optimal strategies establishes
that the quantitative problem for 21/2-player games with parity objectives
can be decided in NP ∩ coNP.

Algorithmic analysis. The results of Condon [5] and Emerson-Jutla [9]
establish that 21/2-player games with reachability objectives and 2-player
games with parity objectives can be decided in NP ∩ coNP. For both 21/2-
player games with reachability objectives and 2-player games with parity ob-
jectives, no polynomial time algorithm is known to solve these games. How-
ever, “strategy improvement” algorithms [11] are known for both the above
classes of games: Condon [6] presents a strategy improvement algorithm
for 21/2-player games with reachability objectives and Vöge-Jurdziński [17]
presents a strategy improvement algorithm for 2-player parity games. Al-
though the best known bounds for the worst case running time of these
algorithms are exponential, these algorithms work much faster in practice.
Using the strategy improvement algorithm analysis, Ludwig [13] presents
a randomized sub-exponential time algorithm for 21/2-player reachability
games with binary game graphs (game graphs with maximum out-degree
of at most 2). Björklund et.al. [1] uses a strategy improvement algorithm
to present a randomized sub-exponential time algorithm for 2-player parity
games. The technique of [1] also yields randomized sub-exponential time
algorithm for the general class of 21/2-player reachability games. To solve
21/2-player games with parity objectives, no better algorithm is known other
than enumerating over the set of all possible pure memoryless strategies, and
choosing the best one as an optimal strategy.

Our results. In this work we present a strategy improvement algorithm
for 21/2-player parity games. Our algorithm combines the techniques of 2-
player parity games, 21/2-player reachability games and reduction techniques

2

of 21/2-player games with parity objectives to 2-player games with parity
objectives with some qualitative criteria. We then show how to combine
the techniques of [1] and our strategy improvement algorithm to obtain a
randomized sub-exponential algorithm for 21/2-player parity games. Given
a game graph G and a parity objective with d-parities, the expected running

time of our algorithm is 2O
(√

d·n·log(n)
)
, where n is the number of states in G.

The algorithm is sub-exponential if d = O
(

n1−ε

log(n)

)
, for some ε > 0, and for

all constants d, the expected running time matches the bound for the best
known (expected sub-exponential time) algorithm of 21/2-player reachability
games.

2 Definitions

We consider several classes of turn-based games, namely, two-player turn-
based probabilistic games (21/2-player games), two-player turn-based deter-
ministic games (2-player games), and Markov decision processes (11/2-player
games).
Game graphs. A turn-based probabilistic game graph (21/2-player game
graph) G = ((S,E), (S1, S2, S©), δ) consists of a directed graph (S,E), a
partition (S1, S2, S©) of the finite set S of states, and a probabilistic tran-
sition function δ: S© → D(S), where D(S) denotes the set of probability
distributions over the state space S. The states in S1 are the player-1 states,
where player 1 decides the successor state; the states in S2 are the player-2
states, where player 2 decides the successor state; and the states in S© are
the probabilistic states, where the successor state is chosen according to the
probabilistic transition function δ. We assume that for s ∈ S© and t ∈ S,
we have (s, t) ∈ E iff δ(s)(t) > 0, and we often write δ(s, t) for δ(s)(t). For
technical convenience we assume that every state in the graph (S,E) has at
least one outgoing edge. For a state s ∈ S, we write E(s) to denote the set
{ t ∈ S | (s, t) ∈ E } of possible successors.

A set U ⊆ S of states is called δ-closed if for every probabilistic state
u ∈ U ∩ S©, if (u, t) ∈ E, then t ∈ U . The set U is called δ-live if for every
nonprobabilistic state s ∈ U ∩ (S1 ∪ S2), there is a state t ∈ U such that
(s, t) ∈ E. A δ-closed and δ-live subset U of S induces a subgame graph
of G, indicated by G � U .

The turn-based deterministic game graphs (2-player game graphs) are
the special case of the 21/2-player game graphs with S© = ∅. The Markov
decision processes (11/2-player game graphs) are the special case of the 21/2-
player game graphs with S1 = ∅ or S2 = ∅. We refer to the MDPs with

3

S2 = ∅ as player-1 MDPs, and to the MDPs with S1 = ∅ as player-2 MDPs.
Plays and strategies. An infinite path, or play, of the game graph G is
an infinite sequence ω = 〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E
for all k ∈ N. We write Ω for the set of all plays, and for a state s ∈ S, we
write Ωs ⊆ Ω for the set of plays that start from the state s.

A strategy for player 1 is a function σ: S∗ · S1 → D(S) that assigns a
probability distribution to all finite sequences ~w ∈ S∗ ·S1 of states ending in
a player-1 state (the sequence represents a prefix of a play). Player 1 follows
the strategy σ if in each player-1 move, given that the current history of the
game is ~w ∈ S∗ · S1, she chooses the next state according to the probability
distribution σ(~w). A strategy must prescribe only available moves, i.e., for
all ~w ∈ S∗, s ∈ S1, and t ∈ S, if σ(~w · s)(t) > 0, then (s, t) ∈ E. The
strategies for player 2 are defined analogously. We denote by Σ and Π the
set of all strategies for player 1 and player 2, respectively.

Once a starting state s ∈ S and strategies σ ∈ Σ and π ∈ Π for the two
players are fixed, the outcome of the game is a random walk ωσ,π

s for which
the probabilities of events are uniquely defined, where an event A ⊆ Ω is a
measurable set of paths. Given strategies σ for player 1 and π for player 2,
a play ω = 〈s0, s1, s2, . . .〉 is feasible if for every k ∈ N the following three
conditions hold: (1) if sk ∈ S©, then (sk, sk+1) ∈ E; (2) if sk ∈ S1, then
σ(s0, s1, . . . , sk)(sk+1) > 0; and (3) if sk ∈ S2 then π(s0, s1, . . . , sk)(sk+1) >
0. Given two strategies σ ∈ Σ and π ∈ Π, and a state s ∈ S, we denote
by Outcome(s, σ, π) ⊆ Ωs the set of feasible plays that start from s given
strategies σ and π. For a state s ∈ S and an event A ⊆ Ω, we write Prσ,π

s (A)
for the probability that a path belongs to A if the game starts from the state
s and the players follow the strategies σ and π, respectively. In the context
of player-1 MDPs we often omit the argument π, because Π is a singleton
set.

The strategies that do not use randomization are called pure. A player-1
strategy σ is pure if for all ~w ∈ S∗ and s ∈ S1, there is a state t ∈ S such
that σ(~w · s)(t) = 1. We denote by ΣP ⊆ Σ the set of pure strategies for
player 1. A strategy that is not necessarily pure is called randomized. A
memoryless player-1 strategy does not depend on the history of the play
but only on the current state and hence can be represented as a function
σ: S1 → D(S). A pure memoryless strategy is a pure strategy that is
memoryless. A pure memoryless strategy for player 1 can be represented
as a function σ: S1 → S. We denote by ΣPM the set of pure memoryless
strategies; that is, ΣPM = ΣP ∩ΣM . Analogously we define the family ΠPM

of pure memoryless strategies for player 2.

4

Given a pure memoryless strategy σ ∈ ΣPM , let Gσ be the game graph
obtained from G under the constraint that player 1 follows the strategy σ.
The corresponding definition Gπ for a player-2 strategy π ∈ ΠPM is analo-
gous, and we write Gσ,π for the game graph obtained from G if both players
follow the pure memoryless strategies σ and π, respectively. Observe that
given a 21/2-player game graph G and a pure memoryless player-1 strategy σ,
the result Gσ is a player-2 MDP. Similarly, for a player-1 MDP G and a pure
memoryless player-1 strategy σ, the result Gσ is a Markov chain. Hence, if
G is a 21/2-player game graph and the two players follow pure memoryless
strategies σ and π, the result Gσ,π is a Markov chain. These observations
will be useful in the analysis of 21/2-player games.
Objectives. We specify objectives for the players by providing the set of
winning plays Φ ⊆ Ω for each player. In this paper we study only zero-
sum games [15, 10], where the objectives of the two players are strictly
competitive. In other words, it is implicit that if the objective of one
player is Φ, then the objective of the other player is Ω \ Φ. Given a
game graph G and an objective Φ ⊆ Ω, we write (G,Φ) for the game
played on the graph G with the objective Φ for player 1. In this paper
we consider ω-regular objectives [16] specified as parity objectives. The ω-
regular objectives, and subclasses thereof, can be specified in the following
forms. For a play ω = 〈s0, s1, s2, . . .〉 ∈ Ω, we define Inf(ω) = { s ∈ S |
sk = s for infinitely many k ≥ 0} to be the set of states that occur infinitely
often in ω.

• Reachability and safety objectives. Given a set T ⊆ S of “tar-
get” states, the reachability objective requires that some state of T
be visited. The set of winning plays is thus Reach(T) = { ω =
〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈ T for some k ≥ 0 }. Given a set F ⊆ S,
the safety objective requires that only states of F be visited. Thus,
the set of winning plays is Safe(F) = { ω = 〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈
F for all k ≥ 0 }.

• Büchi and coBüchi objectives. Given a set B ⊆ S of “Büchi” states, the
Büchi objective requires that B is visited infinitely often. Formally, the
set of winning plays is Büchi(B) = { ω ∈ Ω | Inf(ω) ∩B 6= ∅ }. Given
C ⊆ S, the coBüchi objective requires that all states visited infinitely
often are in C. Formally, the set of winning plays is coBüchi(C) =
{ ω ∈ Ω | Inf(ω) ⊆ C }.

• Parity objectives. For c, d ∈ N, we let [c..d] = { c, c + 1, . . . , d }. Let
p : S 7→ [0..d] be a function that assigns a priority p(s) to every

5

state s ∈ S, where d ∈ N. The Even parity objective is defined as
Parity(p) = { ω ∈ Ω | min

(
Inf(ω)

)
is even }, and the Odd parity

objective as coParity(p) = {ω ∈ Ω | min
(
Inf(ω)

)
is odd }. Informally

we say that a path ω satisfies the parity objective, Parity(p), if ω ∈
Parity(p). Note that for a priority function p : V → { 0, 1 }, an
even parity objective Parity(p) is equivalent to the Büchi objective
Büchi(p−1(0)), i.e., the Büchi set consists of the states with priority 0.

Sure winning, almost-sure winning, and optimality. Given a player-
1 objective Φ, a strategy σ ∈ Σ is sure winning for player 1 from a state
s ∈ S if for every strategy π ∈ Π for player 2, we have Outcome(s, σ, π) ⊆ Φ.
The strategy σ is almost-sure winning for player 1 from the state s for the
objective Φ if for every player-2 strategy π, we have Prσ,π

s (Φ) = 1. The
sure and almost-sure winning strategies for player 2 are defined analogously.
Given an objective Φ, the sure winning set 〈〈1〉〉sure (Φ) for player 1 is the set
of states from which player 1 has a sure winning strategy. The almost-sure
winning set 〈〈1〉〉almost (Φ) for player 1 is the set of states from which player 1
has an almost-sure winning strategy. The sure winning set 〈〈2〉〉sure (Ω \ Φ)
and the almost-sure winning set 〈〈2〉〉almost (Ω \ Φ) for player 2 are defined
analogously. It follows from the definitions that for all 21/2-player game
graphs and all objectives Φ, we have 〈〈1〉〉sure (Φ) ⊆ 〈〈1〉〉almost (Φ). A game is
sure (resp. almost-sure) winning for player i, if player i wins surely (resp.
almost-surely) from every state in the game. Computing sure and almost-
sure winning sets and strategies is referred to as the qualitative analysis of
21/2-player games [8].

Given ω-regular objectives Φ ⊆ Ω for player 1 and Ω \ Φ for player 2,
we define the value functions 〈〈1〉〉val and 〈〈2〉〉val for the players 1 and 2,
respectively, as the following functions from the state space S to the interval
[0, 1] of reals: for all states s ∈ S, let 〈〈1〉〉val (Φ)(s) = supσ∈Σ infπ∈Π Prσ,π

s (Φ)
and 〈〈2〉〉val (Ω\Φ)(s) = supπ∈Π infσ∈Σ Prσ,π

s (Ω\Φ). In other words, the value
〈〈1〉〉val (Φ)(s) gives the maximal probability with which player 1 can achieve
her objective Φ from state s, and analogously for player 2. The strategies
that achieve the value are called optimal: a strategy σ for player 1 is optimal
from the state s for the objective Φ if 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,π

s (Φ). The
optimal strategies for player 2 are defined analogously. Computing values is
referred to as the quantitative analysis of 21/2-player games. The set of states
with value 1 is called the limit-sure winning set [8]. For 21/2-player game
graphs with ω-regular objectives the almost-sure and limit-sure winning sets
coincide [3].

Consider a family ΣC ⊆ Σ of special strategies for player 1. We say

6

that the family ΣC suffices with respect to a player-1 objective Φ on a class
G of game graphs for sure winning if for every game graph G ∈ G and
state s ∈ 〈〈1〉〉sure (Φ), there is a player-1 strategy σ ∈ ΣC such that for
every player-2 strategy π ∈ Π, we have Outcome(s, σ, π) ⊆ Φ. Similarly,
the family ΣC suffices with respect to the objective Φ on the class G of
game graphs for almost-sure winning if for every game graph G ∈ G and
state s ∈ 〈〈1〉〉almost (Φ), there is a player-1 strategy σ ∈ ΣC such that for
every player-2 strategy π ∈ Π, we have Prσ,π

s (Φ) = 1; and for optimality, if
for every game graph G ∈ G and state s ∈ S, there is a player-1 strategy
σ ∈ ΣC such that 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,π

s (Φ).
For sure winning, the 11/2-player and 21/2-player games coincide with

2-player (deterministic) games where the random player (who chooses the
successor at the probabilistic states) is interpreted as an adversary, i.e., as
player 2. Theorem 1 and Theorem 2 state the classical determinacy results
for 2-player and 21/2-player game graphs with parity objectives.

Theorem 1 (Qualitative determinacy [9]) For all 2-player game
graphs and parity objectives Φ, we have 〈〈1〉〉sure (Φ)∩〈〈2〉〉sure (Ω\Φ) = ∅ and
〈〈1〉〉sure (Φ) ∪ 〈〈2〉〉sure (Ω \ Φ) = S. Moreover, on 2-player game graphs, the
family of pure memoryless strategies suffices for sure winning with respect
to parity objectives.

Theorem 2 (Quantitative determinacy [4, 14]) For all 21/2-player
game graphs, all parity objectives Φ, and all states s, we have
〈〈1〉〉val (Φ)(s) + 〈〈2〉〉val (Ω \ Φ)(s) = 1. Moreover, on 21/2-player game
graphs, the family of pure memoryless strategies suffices for optimality with
respect to parity objectives.

Since in 21/2-player games with parity objectives, pure memoryless
strategies suffices for optimality, in sequel we consider only pure memoryless
strategies for both players. Moreover, since parity objectives are infinitary
objectives the following proposition is immediate.

Proposition 1 (Optimality conditions) For a parity objective Φ, for ev-
ery s ∈ S the following conditions hold.

1. If s ∈ S1, then for all t ∈ E(s) we have 〈〈1〉〉val (Φ)(s) ≥ 〈〈1〉〉val (Φ)(t),
and for some t ∈ E(s) we have 〈〈1〉〉val (Φ)(s) = 〈〈1〉〉val (Φ)(t).

2. If s ∈ S2, then for all t ∈ E(s) we have 〈〈1〉〉val (Φ)(s) ≤ 〈〈1〉〉val (Φ)(t),
and for some t ∈ E(s) we have 〈〈1〉〉val (Φ)(s) = 〈〈1〉〉val (Φ)(t).

7

3. If s ∈ S©, then 〈〈1〉〉val (Φ)(s) =
(∑

t∈E(s)〈〈1〉〉val (Φ)(t) δ(s, t)
)
.

Similar conditions hold for the value function 〈〈2〉〉val (Ω \ Φ) of player 2.

3 Strategy Improvement Algorithm

The main result of this section is a strategy improvement algorithm for 21/2-
player games with parity objectives. In section 3.1 we gather a few key
properties of 21/2-player games with parity objectives that were proved in
[3, 2]. We use the properties in section 3.2 to develop a strategy improvement
algorithm for 21/2-player parity games.

3.1 Key properties

We present a reduction of 21/2-player parity games to 2-player parity games
preserving the ability of player 1 to win almost-surely.
Reduction. Given a 21/2-player game graph G = ((S,E), (S1, S2, S©), δ),
with a priority function p : S → [0..d] we construct a 2-player game graph
G = ((S,E), (S1, S2), δ) together with a priority function p : S → [0..d].
The construction is specified as follows. For every nonprobabilistic state
s ∈ S1 ∪ S2, there is a corresponding state s ∈ S such that (1) s ∈ S1

iff s ∈ S1, and (2) p(s) = p(s), and (3) (s, t) ∈ E iff (s, t) ∈ E. Every
probabilistic state s ∈ S© is replaced by the gadget shown in Figure 1. In
the figure, diamond-shaped states are player-2 states (in S2), and square-
shaped states are player-1 states (in S1). From the state s with p(s) = p(s),
the players play the following 3-step game in G. First, in state s player 2
chooses a successor (s̃, 2k), for k ∈ {0, 1, . . . , j}, where p(s) = 2j or p(s) =
2j − 1. For every state (s̃, 2k), we have p(s̃, 2k) = p(s). For k > 1, in
state (s̃, 2k) player 1 chooses from two successors: state (ŝ, 2k − 1) with
p(ŝ, 2k − 1) = 2k−1, or state (ŝ, 2k) with p(ŝ, 2k) = 2k. The state (s̃, 0) has
only one successor (ŝ, 0), with p(ŝ, 0) = 0. Finally, in each state (ŝ, k) the
choice is between all states t such that (s, t) ∈ E, and it belongs to player 1
if k is odd, and to player 2 if k is even.

We consider 21/2-player games played on the graph G with the parity
objective Parity(p) for player 1. We denote by G = Tras(G) the 2-player
game, with parity objective Parity(p), as defined by the reduction above.
Also given a strategy (pure memoryless) σ in the 2-player game G, a strategy
σ = Tras(σ) in the 21/2-player game G is defined as follows:

σ(s) = t, if and only if σ(s) = t; for all s ∈ S1.

8

(bs, 0)

E(s) E(s) E(s) E(s) E(s)

(bs, 1) (bs, 4)(bs, 2) (bs, 3)

E(s) E(s)

s

(es, 0) (es, 4)(es, 2)

p(s)

p(s) p(s) p(s) p(s)

p()=1p()=0 p()=2 p()=3 p()=4

(es, 2j)

(bs, 2j − 1) (bs, 2j)

p()=2jp()=2j-1

Figure 1: Gadget for the reduction of 21/2-player parity games to 2-player
parity games.

Similar definitions hold for player 2.

Lemma 1 ([3]) Given a 21/2-player game graph G with the parity objective
Parity(p) for player 1, let U1 and U2 be the sure winning sets for players 1
and 2, respectively, in the 2-player game graph G = Tras(G) with the modi-
fied parity objective Parity(p). Define the sets U1 and U2 in the original 21/2-
player game graph G by U1 = { s ∈ S | s ∈ U1 } and U2 = { s ∈ S | s ∈ U2 }.
Then the following assertions hold:

1. U1 = 〈〈1〉〉almost (Parity(p)) = (S \ U2).

2. If σ is a pure memoryless sure winning strategy for player 1 from U1

in G, then σ = Tras(σ) is an almost-sure winning strategy for player 1
from U1 in G.

Boundary probabilistic states. Given a set U of states, let Bou(U) =
{ s ∈ U ∩S© | ∃t ∈ E(s), t 6∈ U }, be the set of boundary probabilistic states
that have an edge out of U . Given a set U of states and a parity objective
Parity(p) for player 1, we define a transformation Trwin1(U) of U as follows:
every state s in Bou(U) is converted to an absorbing state (state with only
a self-loop) and assigned an even priority 2bd

2c, i.e., every state in Bou(U)
is converted to a sure winning state for player 1. Observe that if U is δ-live,
then Trwin1(G � U) is a gamegraph.

Value classes. Given a parity objective Φ, for every real r ∈ IR the value
class with value r, VC(r) = { s ∈ S | 〈〈1〉〉val (Φ)(s) = r }, is the set of

9

states with value r for player 1. It follows from Proposition 1 that for every
r > 0, the value class VC(r) is δ-live. The following lemma establishes a
connection between value classes, the transformation Trwin1 and the almost-
sure winning states.

Lemma 2 ([2]) For every value class VC(r), for r > 0, the game
Trwin1(G � VC(r)) is almost-sure winning for player 1.

It follows from Lemma 1 and Lemma 2, that for every value class VC(r),
with r > 0, the game Tras(Trwin1(G � VC(r))) is sure winning for player 1.

3.2 Strategy improvement algorithm

We now present a strategy improvement algorithm for 21/2-player games
with parity objectives.

Notation. Given a strategy π and a set U of states, we denote by (π � U)
a strategy that for every state in U follows the strategy π.

Values and value class given strategies. Given a player-2 strategy π
and a parity objective Φ, we denote the value of player 1 given the strategy
π as follows: 〈〈1〉〉πval (Φ)(s) = supσ∈ΣPM Prσ,π

s (Φ). Similarly we define the
value classes given strategy π as VCπ(r) = { s ∈ S | 〈〈1〉〉πval (Φ)(s) = r }.
Witness for player 2. Given a 21/2-player gamegraph G, and a parity
objective Φ for player 1, a witness wit2 = (π, πQ) for player 2 is described
as follows:

• The strategy π is a strategy in the game G.

• For every value class VCπ(r), the strategy (πQ � VCπ(r)) is a strategy
in the 2-player game Gr = Tras(Trwin1(G � VCπ(r))). Also we must
have π = Tras(πQ).

A witness wit2 = (π, πQ) for player 2 is an optimal witness if the strategy π
is an optimal strategy for player 2.

Ordering of witnesses. We define an ordering relation ≺ on witnesses as
follows: given two witnesses wit2 = (π, πQ) and wit ′2 = (π′, π′Q), we have
wit2 ≺ wit ′2 if and only if the following conditions hold:

1. for all states s, we have 〈〈1〉〉πval (Φ)(s) ≥ 〈〈1〉〉π′val (Φ)(s) and for some
state s we have 〈〈1〉〉πval (Φ)(s) > 〈〈1〉〉π′val (Φ)(s); or

10

Algorithm 1 ProfitableSwitch

Input : A 21/2-player game G with parity objective Φ for player 1
and a witness wit2 = (π, πQ) for player 2.

Output: A witness wit ′2 for player 2 such that either wit2 = wit ′2 or wit2 ≺ wit ′2.

1. (Step 1.) Compute 〈〈1〉〉πval (Φ)(s) for all states s.
2. (Step 2.) Consider the set I = { s ∈ S2 | ∃t ∈ E(s). 〈〈1〉〉πval (Φ)(s) > 〈〈1〉〉πval (Φ)(t) }.

2.1 (Value improvement.) if I 6= ∅, then set π′ as follows:
π′(s) = π(s) for s ∈ S2 \ I; and
π′(s) = t for s ∈ I, and t ∈ E(s), such that 〈〈1〉〉πval (Φ)(s) > 〈〈1〉〉πval (Φ)(t).
and set π′Q to be an arbitrary strategy such that π′ = Tras(π′Q).

2.2 (Qualitative improvement.) else for every value class VCπ(r),
let Gr be the 2-player game (Tras(Trwin1(G � VCπ(r))))
set (π′Q � VCπ(r)) = SwitchTwoPlParity(Gr, (πQ � VCπ(r))) and π′ = Tras(π′Q),
(where SwitchTwoPlParity is a strategy improvement step for 2-player parity games).

3. return wit ′2 = (π′, π′Q).

2. for all states s, we have 〈〈1〉〉πval (Φ)(s) = 〈〈1〉〉π′val (Φ)(s), and in every
value class VCπ(r) = VCπ′(r), we have (πQ � VCπ(r)) ≺Q (π′Q �
VCπ(r)) in the 2-player parity game Tras(Trwin1(G � VCπ(r))), where
≺Q denotes the ordering of strategies for a strategy improvement al-
gorithm for 2-player parity games (e.g., as defined in [17, 1]).

Profitable switch. Given a witness wit2 = (π, πQ) for player 2, we describe
a procedure ProfitableSwitch to “improve” the witness according to the
witness ordering ≺. The procedure is described in Algorithm 1. An informal
description of the procedure is as follows: given a witness wit2 = (π, πQ), the
algorithm computes the values 〈〈1〉〉πval (Φ)(s) for all states. If there is a state
s ∈ S2, such that the strategy can be “value improved”, i.e., there is a state
t ∈ E(s), with 〈〈1〉〉πval (Φ)(t) < 〈〈1〉〉πval (Φ)(s), then the witness is modified
setting π(s) to t. This is achieved in Step 2.1 of ProfitableSwitch. Else
in every value class VCπ(r), the strategy πQ is “improved” for the game
(Tras(Trwin1(G � VCπ(r)))) w.r.t. the ordering ≺Q of strategies for 2-player
parity games. This is achieved in Step 2.2 of ProfitableSwitch.

Lemma 3 Consider a witness wit2 = (π, πQ) to be an input to Al-
gorithm 1, and let wit ′2 = (π′, π′Q) be an output, i.e., wit ′2 =

11

ProfitableSwitch(G,wit2). If the set I in Step 2 of Algorithm 1 is non-
empty, then we have

〈〈1〉〉πval (Φ)(s) ≥ 〈〈1〉〉π′val (Φ)(s) ∀s ∈ S; 〈〈1〉〉πval (Φ)(s) > 〈〈1〉〉π′val (Φ)(s) ∀s ∈ I.

The key argument to prove Lemma 3 is as follows. Let wit2 = (π, πQ)
be an input to Algorithm 1 and wit ′2 = (π′, π′Q) be the output. Observe that
given strategy π, for every state s ∈ VCπ(r) ∩ S1, if t ∈ E(s), then we have
〈〈1〉〉πval (Φ)(t) ≤ r, i.e., t ∈ ⋃

0≤q≤r VCπ(q). Hence player 1 can only choose
edges with the target of the edge in equal or lower value classes. Using
this fact, it can be shown that if player 2 switches to the strategy π′, as
constructed when Step 2.1 of Algorithm 1 is executed, then for all strategies
σ for player 1 the following assertion hold: if there is a closed recurrent class
C ⊆ (S \VCπ(1)) in the Markov chain Gσ,π′ , then C is winning for player 2,
i.e., min(p(C)) is odd. It follows that given strategy π′, a counter optimal
strategy for player 1 maximizes the probability to reach VCπ(1). From
arguments similar to 21/2-player games with reachability objectives [6], with
VCπ(1) as the target for player 1, and the value improvement step (Step 2.1
of Algorithm 1) Lemma 3 follows.

Lemma 4 Consider a witness wit2 = (π, πQ) to be an input to Al-
gorithm 1, and let wit ′2 = (π′, π′Q) be an output, i.e., wit ′2 =
ProfitableSwitch(G,wit2), such that wit2 6= wit ′2. If the set I in Step
2 of Algorithm 1 is empty, then we have

1. For all states s, 〈〈1〉〉πval (Φ)(s) ≥ 〈〈1〉〉π′val (Φ)(s).

2. If for all states 〈〈1〉〉πval (Φ)(s) = 〈〈1〉〉π′val (Φ)(s), then for all value class
VCπ(r), (πQ � VCπ(r)) ≺Q (π′Q � VCπ(r)).

A proof sketch for Lemma 4 is as follows: an argument similar to the
argument for Lemma 3 shows that for a strategy π′ constructed in Step 2.2
of Algorithm 1 the following assertion hold: for all strategies σ for player 1,
if there is a closed recurrent class C ⊆ (S \ VCπ(1)) in the Markov chain
Gσ,π′ , then C is winning for player 2, i.e., min(p(C)) is odd. Since in strat-
egy π′ player 2 chooses every edge in the same value class as π, it fol-
lows that for all states s we have 〈〈1〉〉πval (Φ)(s) ≥ 〈〈1〉〉π′val (Φ)(s). If for all
states s we have 〈〈1〉〉πval (Φ)(s) = 〈〈1〉〉π′val (Φ)(s), then by properties of Proce-
dure SwitchTwoPlParity, the condition 2 of Lemma 4 follows. This proves
Lemma 4. Lemma 3 and Lemma 4 yields the following result.

Lemma 5 For a witness wit2 = (π, πQ), we have if wit2 6=
ProfitableSwitch(G,wit2), then wit2 ≺ ProfitableSwitch(G,wit2).

12

Algorithm 2 StrategyImprovementAlgorithm

Input : A 21/2-player game G with parity objective Φ for player 1.
Output: A witness wit∗2 = (π∗, π∗Q) for player 2.
1. Pick an arbitrary witness wit2 = (π, πQ) for player 2.
2. while wit2 6= ProfitableSwitch(G,wit2)

do wit2 = ProfitableSwitch(G,wit2).
3. return wit∗2 = wit2.

The key argument to establish that if a witness wit2 satisfy that wit2 =
ProfitableSwitch(G,wit2), then wit2 is an optimal witness is as follows:
let wit2 be a witness such that wit2 = ProfitableSwitch(G,wit2), and
let wit1 = (σ, σQ) be the counter optimal witness for player 1 against wit2.
Consider a value class VCπ(r), for r > 0, and the game Gr = Tras(Trwin1(G �
VCπ(r))). Since πQ cannot be improve against σQ w.r.t. the ordering ≺Q,
it follows that σQ is a sure winning strategy in Gr. Hence it follows from
Lemma 1 that σ is an almost-sure winning strategy for player 1 in Trwin1(G �
VCπ(r)), since σ = Tras(σQ). Consider any strategy π′ for player 2, against
σ, and consider the Markov chain Gσ,π′ . Since σ is almost-sure winning in
Trwin1(G � VCπ(r)), for all r > 0, it follows that for any closed recurrent
class C of Gσ,π′ , such that C ⊆ ⋃

r>0 VCπ(r), we have C is winning for
player 1 (i.e., the minimum priority of C is even). Moreover, since the
strategy π cannot be “value improved” it follows from arguments similar to
[6] for 21/2-player reachability games that for all strategies π′, for all states
s ∈ VCπ(r), we have Prσ,π′

s (Φ) ≥ r. Hence we have 〈〈1〉〉val (Φ)(s) ≥ r.
Since σ is an optimal strategy against π, for all states s ∈ VCπ(r), we have
r = 〈〈1〉〉πval (Φ)(s) ≥ 〈〈1〉〉val (Φ)(s). This establishes optimality of π, and
yields the following lemma.

Lemma 6 For a witness wit2 = (π, πQ), we have if wit2 =
ProfitableSwitch(G,wit2), then wit2 is an optimal witness for player 2.

A strategy improvement algorithm using the ProfitableSwitch proce-
dure is described in Algorithm 2. Observe that it follows from Lemma 5
that if Algorithm 2 outputs a witness wit∗2 = (π∗, π∗Q), then wit∗2 =
ProfitableSwitch(G,wit∗2). The correctness of the algorithm follows from
Lemma 6 and yields Theorem 2. An illustration of the working of the algo-
rithm is presented in Example 1.

13

0 1

2 2

21

2/3

s5

s0

2/3 1/3
1/3

s1

s4

s3s2

Figure 2: A 21/2-player parity game.

Example 1 (Strategy improvement algorithm) Consider the game
shown in Fig. 2 where the set of states is { s0, s1, s2, s3, s4, s5 }. The 2-
states are player 1 states, the 3-states are player 2 states, and ©-states are
the probabilistic states. The priorities of the states and the transition prob-
abilities are indicated in Fig. 2. Consider the initial strategy π0 for player 2
that chooses s5 → s0 at state s5. Given the strategy π0, the counter optimal
strategy σ0 for player 1 is to choose s4 → s5 at state s4. Given the strategies
σ0 and π0 the value vector ~v is (1, 0, 2

3 , 1
3 , 1, 1), where ~vi denotes the value

for player 1 at state si. At this stage by “value improvement” step of proce-
dure ProfitableSwitch, the strategy of player 2 switches to the strategy π1

that chooses s5 → s2 at state s5. Given the strategy π1, the counter optimal
strategy σ1 for player 1 is still to choose s4 → s5 at state s4. Given σ1 and
π1, the value vector ~v is (1, 0, 2

3 , 1
3 , 2

3 , 2
3). At this stage no value improvement

is possible for player 2. Consider the value class VCπ1(2
3) = {s2, s4, s5}, and

assume the state s2 to be an absorbing sure winning state for player 1. In the
sub-game Trwin1(VCπ(2

3)), player 2 switching to the strategy π2 that chooses
s5 → s4 at state s5, wins surely from s5. Hence player 2 switches to the
strategy π2 by “qualitative improvement” step of ProfitableSwitch. Given
the strategy π2, the counter optimal strategy σ2 for player 1 is to choose
s4 → s3 at state s4. Given the strategies σ2 and π2, the value vector ~v is
(1, 0, 2

3 , 1
3 , 1

3 , 1
3), and for all states si, ~vi represents the value for player 1. The

algorithm stops and the strategy π2 is an optimal strategy for player 2. Also
observe that if the game is slightly modified, by assigning priority 0 to state
s4 instead of 2, then after stage 1 of iteration, the sub-game Trwin1(VCπ1(2

3))
is surely winning for player 1. The algorithm would have stopped after iter-
ation 1, by correctly discovering the value vector ~v = (1, 0, 2

3 , 1
3 , 2

3 , 2
3), as the

values of the game.

Theorem 3 (Correctness of Algorithm 2) Let wit∗2 = (π∗, π∗Q) be an

14

output of Algorithm 2. Then the strategy π∗ is an optimal strategy for
player 2.

4 Randomized Sub-exponential Algorithm

In this section we combine the randomized sub-exponential time algorithm
for 2-player parity games of Björklund et.al. [1] and the witness improvement
procedure ProfitableSwitch to present a randomized sub-exponential time
algorithm for 21/2-player games with parity objectives Parity(p). The algo-
rithm works in sub-exponential time when the number of parities d of the
function p satisfy that d = O

(
n1−ε

log(n)

)
, for some ε > 0. For all constants d,

e.g., Büchi and coBüchi objectives, our algorithm works in comparable time
with the best known algorithm for 21/2-player reachability games.

Games and improving sub-games. Let G(l,m) be the class of 21/2-player
games with the set S2 of player 2 states partitioned into two sets as follows:

• O1 = { s ∈ S2 | |E(s)| = 1 }, i.e., the set of states with out-degree 1.

• O2 = S2 \O1, with O2 ≤ l, and
∑

s∈O2
|E(s)| ≤ m.

There is no restriction for player 1. Given a game G ∈ G(l,m), a state
s ∈ O2, and an edge e = (s, t), we consider the sub-game G̃e, by deleting all
edges at s other than the edge e. Observe that G̃e ∈ G(l − 1,m − |E(s)|),
and hence also G̃e ∈ G(l,m). If wit2 = (π, πQ) is a witness for player 2 in
G ∈ G(l,m), then a sub-game G̃, is wit2-improving, if some witness wit ′2 =
(π′, π′Q) in G̃, satisfies wit2 ≺ wit ′2. We now present an informal description
of Algorithm 3.

Informal description of Algorithm 3. The algorithm takes a 21/2-player
parity game and an initial witness wit0

2, and proceeds in three steps as fol-
lows: in Step 1 it constructs r-pairs of wit0

2-improving sub-games G̃ and
improving witness wit2 in G̃. This is achieved by procedure ManyImprov-
ingSubgames. The parameter r depends on the algorithm and fixing r
we would get different complexity analysis. In Step 2, the algorithm selects
uniformly at random one of the improving sub-games G̃ and the witness
wit2 and recursively computes an optimal witness wit∗2 in G̃ with wit2 as
the initial witness. If the witness wit∗2, is optimal in the original game G,
then the algorithm terminates and returns wit∗2. Else it improves wit∗2, by
a ProfitableSwitch, and continues by going to Step 1 with the improved
witness ProfitableSwitch(G,wit ∗2) as the initial witness. The description
of the procedure ManyImprovingSubgames is as follows: it constructs a

15

sequence of games (G0, G1, . . . , Gr−l) with Gi ∈ G(l, l + i) such that all the
(l + i)-sub-games G̃i

e of Gi are wit0
2-improving. The procedure constructs

Gi+1 from Gi as follows: it computes an optimal witness wit i
2 in Gi, and if

wit i
2, is optimal in G, then we have discovered an optimal witness, otherwise

construct Gi+1 by adding a target edge e of ProfitableSwitch(G,wit i
2) in

Gi.

Algorithm 3 Randomized Algorithm 21/2-player Games

Input : A 21/2-player parity game G ∈ G(l,m), and an initial witness wit0
2 for player 2.

Output : An optimal witness wit∗2 = (π∗, π∗Q) for player 2.

1. (Step 1.) Collect a set I of r pairs of (G̃,wit2) of sub-games G̃ of G, and
witnesses wit2 in G̃, such that wit0

2 ≺ wit2.
(This is achieved by Procedure ManyImprovingSubgames).

2. (Step 2.) Select a pair (G̃,wit2) from I uniformly at random.
2.1 Find an optimal witness in wit∗2 ∈ G̃ by applying the algorithm recursively,

with wit2 as the initial witness.

3. (Step 3.) if wit∗2 is an optimal witness in the original game G, then
return wit∗2 = (π∗, π∗Q).

else let wit2 = ProfitableSwitch(G,wit ∗2), and
goto Step 1 with G and wit2 as the initial witness.

Procedure ManyImprovingSubgames
1. Construct a sequence (G0, G1, . . . , Gr−l) of sub-games with Gi ∈ G(l, l + i) as follows:

1.1 G0 is the game where each edge is fixed according to wit0
2.

1.2 Let wit i
2 be an optimal witness in Gi,

1.2.1 if wit i
2 is an optimal witness in the original game G,

terminate algorithm and return wit i
2.

1.2.2 else let e be the target of ProfitableSwitch(G,wit i
2).

The sub-game Gi+1 is the sub-game Gi with edge e added.

2. return r sub-games by fixing one of the r-edges in Gr−l ∈ G(l, r) and
the corresponding witness.

16

Lemma 7 (Correctness and termination) Algorithm 3 correctly com-
putes an optimal witness wit∗2.

Proof. Observe that every time Step 1 of the algorithm is executed, the ini-
tial witness is improved w.r.t. the ordering ≺ of witness. Since the number
of witnesses are bounded, the termination of the algorithm follows. Step 3 of
Algorithm 3 and Step 1.2.1 of procedure ManyImprovingSubgames en-
sures that on termination of the algorithm, the witness returned is optimal.

The following lemma bounds the expected number of iteration of Algo-
rithm 3. The analysis is similar to the results of [1].

Lemma 8 (Expected iterations) The expected number of iteration
T (·, ·) of Algorithm 3 for a game G ∈ G(l,m) is bounded by the following
recurrence

T (l,m) ≤
r∑

i=l

T (l, i) + T (l − 1,m− 2) +
1
r

r∑
i=1

T (l,m− i) + 1.

Proof. We justify every term of the right hand side of the recurrence. The
first term represent the work by procedure ManyImprovingSubgames
by recursive calls to Algorithm 3 to compute r pairs of wit0

2-improving sub-
games and witnesses. The second term represents the work of the recursive
call at Step 2 of Algorithm 3. The third term represents the work as the
average of the r equally likely choices in Step 3 of Algorithm 3. All the sub-
games Gi can be partially ordered according to the values of the optimal
witnesses in Gi. Since the algorithm only visits witnesses that are improving
w.r.t. the ≺ ordering, it follows that sub-games that have equal, worse or
incomparable optimal witness, to the witness wit∗2 will never be explored in
the rest of the algorithm. In the worst case the algorithm selects the worst
r sub-games and the Step 3 solves a game G ∈ G(l,m− i), for i = 1, 2, . . . , r,
each with probability 1

r . This gives the bound for the recurrence.
Using the analysis of Kalai for an algorithm for linear programming,

Björklund et.al. in [1] proves that

mO
(√

l/ log(l)
)

= 2O
(√

l log l
)

is a solution to the recurrence of Lemma 8.

17

Lemma 9 Given a 21/2-player parity game G, with a parity objective
Parity(p), where p : S → [0..d], Algorithm 3 works in time

2O
(√

z log(z)
)
× running time of ProfitableSwitch,

where n1 = |S1|, n2 = |S2| and n0 = |S©|, and z = (n0 · d + n2).

Proof. We first observe that the reduction of 21/2 player games to 2-player
games by reduction Tras(·) causes a blow-up by a factor of d for states in
S©. This fact, along with the bound of recurrence of Lemma 8, and plugging
l = d ·n0 +n2 in the bound, yields that the expected number of iterations of

Algorithm 3 is bounded by 2O
(√

(d·n0+n2)·log(d·n0+n2)
)
. Since each iteration

of the algorithm requires to compute a ProfitableSwitch, the desired result
follows.

Lemma 10 The procedure ProfitableSwitch can be computed in polyno-
mial time.

Proof. Computing a ProfitableSwitch is equivalent to solve a MDP with
parity objectives quantitatively (Step 1 of ProfitableSwitch) and com-
puting a switch of 2-player parity games (Step 2.2 of ProfitableSwitch).
The quantitative solution of parity MDPs can be achieved in polynomial
time [7, 4]. The result of [17, 1] describes procedure to compute in polyno-
mial time a switch for 2-player parity games (i.e., a polynomial procedure
for SwitchTwoPlParity). Hence the desired result follows.

Using a symmetric version of Algorithm 3 for player 1 if |S1| ≤ |S2|, and
using Lemma 9 and Lemma 10 we obtain Theorem 4.

Theorem 4 Given a 21/2-player parity game G, with a parity objective
Parity(p), where p : S → [0..d], the value function 〈〈1〉〉val (Parity(p))(s)
can be computed for all s, in time

2O
(√

z log(z)
)
×O

(
poly(n)

)
,

where n1 = |S1|, n2 = |S2| and n0 = |S©|, z = (n0 · d + min{ n1, n2 }), and
poly represents a polynomial function.

References

[1] H. Bjorklund, S. Sandberg, and S. Vorobyov. A discrete subexponential
algorithms for parity games. In STACS’03, pages 663–674. LNCS 2607,
Springer, 2003.

18

[2] K. Chatterjee, L. de Alfaro, and T.A. Henzinger. The complexity of
stochastic rabin and streett games. Technical Report UCB/CSD-3-
1355, UC Berkeley, 2004. To appear ICALP 05.

[3] K. Chatterjee, M. Jurdziński, and T. A. Henzinger. Simple stochas-
tic parity games. In CSL’03, volume 2803 of LNCS, pages 100–113.
Springer, 2003.

[4] K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Quantitative
stochastic parity games. In SODA’04, pages 114–123. SIAM, 2004.

[5] A. Condon. The complexity of stochastic games. Information and
Computation, 96:203–224, 1992.

[6] A. Condon. On algorithms for simple stochastic games. In Jin-Yi Cai,
editor, Advances in Computational Complexity Theory, volume 13 of
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 51–73. American Mathematical Society, 1993.

[7] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis,
Stanford University, 1997.

[8] L. de Alfaro and T. A. Henzinger. Concurrent ω-regular games. In
LICS’00, pages 141–154. IEEE Computer Society Press, 2000.

[9] E.A. Emerson and C. Jutla. The complexity of tree automata and logics
of programs. In FOCS’88, pages 328–337. IEEE Computer Society
Press, 1988.

[10] J. Filar and K. Vrieze. Competitive Markov Decision Processes.
Springer, 1997.

[11] A. Hoffman and R. Karp. On nonterminating stochastic games. Man-
agement Science, 12:359–370, 1966.

[12] A. Kechris. Classical Descriptive Set Theory. Springer, 1995.

[13] W. Ludwig. A subexponential randomized algorithm for the simple
stochastic game problem. Information and Computation, 117:151–155,
1995.

[14] A. K. McIver and C. C. Morgan. Games, probability, and the quantita-
tive µ-calculus qmµ. In LPAR’02, volume 2514 of LNAI, pages 292–310.
Springer, 2002.

19

[15] T. E. S. Raghavan and J. A. Filar. Algorithms for stochastic games —
a survey. ZOR — Methods and Models of Operations Research, 35:437–
472, 1991.

[16] W. Thomas. Languages, automata, and logic. In Handbook of For-
mal Languages, volume 3, Beyond Words, chapter 7, pages 389–455.
Springer, 1997.

[17] J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm
for solving parity games. In CAV’00, volume 1855 of LNCS, pages
202–215. Springer, 2000.

[18] W. Zielonka. Perfect-information stochastic parity games. In FoS-
SaCS’04, volume 2987 of LNCS, pages 499–513. Springer, 2004.

20

